Research Article | | Peer-Reviewed

Pixel Computer Aided Design (CAD) Method to Understand Mass Measurements, Imaging in Milli, Micro and Nanometer Resolution

Received: 2 January 2026     Accepted: 13 January 2026     Published: 30 January 2026
Views:       Downloads:
Abstract

In this article we measure the steady mass for our samples polyvinyl chloride and polyethylene. The constant mass is achieved when the acrylic box is used to shield the precision mass balance. The mass of our sample 1 polyvinyl chloride is 160 mg. Our sample 1 polyvinyl chloride is thin film of length 5.5 mm, width 7 mm and thickness 3.2 mm. The density of the polyvinyl chloride is 1300 kg/m3 in agreement with the literature. The stream flow is blocked when the acrylic shield is used. We observe fluctuations in the mass from 320 mg to 560 mg when there is no acrylic shield. The mass of our sample 2 polyethylene is 120 mg and the density is 893 kg/m3 with the acrylic shield. The mass of the polyethylene membrane material fluctuates from 60 mg to 350 mg without the acrylic shield. The geometry of our sample 2 polyethylene is length 14 mm, width 12 mm and thickness 0.8 mm. Further we build pixel computer aided design (CAD) model to correlate with the chemical elements in the periodic table towards exact match with the optical camera image of our two samples that are polyvinyl chloride and polyethylene. Furthermore we build the model to exact match to the scanning electron microscopy (SEM) in micrometer and nanometer resolution to both samples. The chemical periodic table elements are obtained from energy dispersive spectroscopy (EDS). The study of membrane materials can find applications towards energy and thermal management coolants.

Published in International Journal of Materials Science and Applications (Volume 15, Issue 1)
DOI 10.11648/j.ijmsa.20261501.12
Page(s) 15-25
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2026. Published by Science Publishing Group

Keywords

Computer Aided Design (CAD), Pixel Imaging, Scanning Electron Microscopy (SEM), Polyvinyl Chloride, Polyethylene

References
[1] J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, R. Schwartz, Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions, Nature Photonics, 3, 292-296, 2009.
[2] C. G. Salzmann, J. S. Loveday, A. R. Finsen, Craig L. Bull, Structure and nature of ice XIX, Nature Communications, 12, 1-7, 2021.
[3] L. D. Rosso, M. Celli, F. Grazzi, M. Catti, T. C. Hansen, A. D. Fortes, L. Ulivi, Cubic ice without stacking defects obtained from ice XVII, Nature Materials, 19, 663-668, 2020.
[4] C. G. Salzmann, B. J. Murray, Ice goes fully cubic, Nature Materials, 19, 586-587, 2020.
[5] M. Hertzog, M. Wang, J. Mony, K. Borjesson, Strong light-matter interactions: a new direction within chemistry, Chem. Soc. Rev., 48, 937-961, 2019.
[6] M. Nase, A. Zankel, B. Langer, H. J. Baumann, W. Grellmann, P. Poelt, Investigation of the peel behavior of polyethylene/polybutene-1 peel films using in situ peel tests with environmental scanning electron microscopy, Polymer, 49, 5458-5466, 2008.
[7] S. Das, M. Muthukumar, Thermal conduction and phonon transport in folded polyethylene chains, Macromolecules, 56, 393-403, 2023.
[8] T. Walther, Recent improvements in quantification of energy-dispersive X-ray spectra and maps in electron microscopy of semiconductors, Applied Research, 3, 1-11, 2024.
[9] V. V. R. Nandigana, Pixel imaging method, transport phenomenon in sizes from nano, micro, and milli scale pore membrane, Engineering Reports, 7, 1-12, 2025.
[10] P. W. Wachulak, M. C. Marconi, R. A. Bartels, C. S. Menoni, J. J. Rocca, Holographic imaging with a nanometer resolution using compact table-top EUV Laser, Opto-Electronics Review 18, 80-90, 2010.
[11] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss, Quantum Dots for Live Cells, In Vivo Imaging, and Diagnostics, Science, 307, 538-544, 2005.
[12] Muthukumar, Screening effect on viscoelasticity near the gel point, Macromolecules, 22, 4656-4658, 1989.
[13] X. Wang, V. Ho, R. A. Segalman, D. G. Cahill, Thermal conductivity of high-modulus polymer fibers. Macromolecules, 46, 4937-4943, 2013.
[14] J. Hennig, Anisotropy and structure in uniaxially stretched amorphous high polymers, Journal of Polymer Science Part C: Polymer Symposia. 16, 2751-2761, 1967.
[15] T. Ebbinghaus, G. Lang, T. Scheibel, Biomimetic polymer fibers-function by design, Bioinspiration & Biomimetics, 18, 1-29, 2023.
[16] R. E. Wetton, J. L. Duncan, Design of polymers for viscoelastic damping applications, J. Acoust. Soc. Am, 86, S51, 1989.
[17] G. Menges, N. Berndtsen, Polyvinyl chloride-Processing and structure, Pure and Applied Chemistry, 49, 597-613, 1977.
[18] C. A. Jones, S.A. Gordeyev, S.J. Shilton, Poly(vinyl chloride) (PVC) hollow fibre membranes for gas separation, Polymer, 52, 901-903, 2011.
[19] R. Kumar, W. Li, B. G. Sumpter, M. Muthukumar, Understanding the effects of dipolar interactions on the thermodynamics of diblock copolymer melts, J. Chem. Phys. 151, 054902 2019.
[20] A. A. Teran, N. P. Balsara, Thermodynamics of block copolymers with and without salt, J. Phys. Chem. B, 118, 4-17, 2014.
[21] B. Frank, A. P. Gast, T. P. Russell, H. R. Brown, C. Hawker, Polymer Mobility in Thin Films, Macromolecules, 29, 6531-6534, 1996.
[22] K. Feldman, T. Tervoort, P. Smith, N. D. Spencer, Toward a Force Spectroscopy of Polymer Surfaces, Langmuir, 14, 372-378, 1998.
[23] J. H. Butler, D. C. Joy, G. F. Bradley, S. J. Krause, Low-voltage scanning electron microscopy of polymers, Polymer, 36, 1781-1790, 1995.
[24] M. Avella, E. Martuscelli, P. Greco, Crystallization behavior of poly(ethylene oxide) from poly(3-hydroxybutyrate)/poly(ethylene oxide) blends: phase structuring, morphology and thermal behavior, Polymer, 32, 1647-1653, 1991.
[25] J. Euvrard, A. Revaux, P. A. Bayle, M. Bardet, D. Vuillaume, A. Kahn, The formation of polymer-dopant aggregates as a possible origin of limited doping efficiency at high dopant concentration, Organic Electronics, 53, 135-140, 2018.
[26] R. H. Baughman, J. L. Bredas, R. R. Chance, R. L. Elsenbaumer, L. W. Shacklette, Structural basis for semiconducting and metallic polymer dopant systems, Chemical Reviews, 82, 209-222, 1982.
[27] Z. I. B. Valdez, R. Xiao, C. Cendra, A. S. Fergerson, Z. Chen, G. Gonel, A. Salleo, D. Yu, A. J. Moule, Reversible doping and photo patterning of polymer nanowires, Advanced Electronic Materials, 6, 1-10, 2020.
[28] E. Jacobs, J. Li, S. L. Burg, D. J. Bilsky, B. T. Rotondo, M. P. Augustine, P. Stroeve, A. J. Moule, Reversible optical control of conjugated polymer solubility with sub-micrometer resolution, ACS Nano, 9, 1905-1912, 2015.
[29] C. D. Muller, A. Falcou, N. Reckefuss, M, Rojahn, V. Wiederhirn, P. Rudati, H. Frohne, O. Nuyken, H. Becker, K. Meerholz, Multi-colour organic light-emitting displays by solution processing, Nature, 421, 829-833, 2003.
[30] D. Gentili, M. Bolognesi, M. Baldoni, F. Mercuri, M. Muccini, M. Cavallini Submicrometer spatially controlled doping of polymer thin films by a single-step soft-contact approach, ACS Applied Electronic Materials, 5, 6996-7003, 2023.
[31] K. Blankenbach, A. Schmoll, A. Bitman, F. Bartels, D. Jerosch, Novel highly reflective and bistable electrowetting displays, J. Soc. Inf. Display 16, 237-244, 2008.
[32] J. Sun, X. Liao, A. M. Minor, N. P. Balsara, R. N. Zuckermann. Morphology-conductivity relationship in crystalline and amorphous sequence-defined peptoid block copolymer electrolytes, Journal of the American Chemical Society, 136, 14990-14997, 2014.
[33] M. Seidler, T. Yu, X. Luo, D. Prendergast, R. N. Zuckermann, X. Jiang, N. P. Balsara, Atomic-scale imaging of condensed counterions, Macromolecules, 57, 10016-10022, 2024.
[34] M. Muthukumar, C. K. Ober, and E. L. Thomas, Competing interactions and levels of ordering in self-organizing polymeric materials, Science, 277, 1225-1232, 1997.
[35] A. Marathianos, A. Magiakos, Y. Han, A. Sanchez, R. Whitfield, J. Kammerer, A. Anastasaki, P. Wilson, J. P. Patterson, C. B. Kowollik, E. Liarou, Atomic-scale imaging of polymers and precision molecular weight analysis, Journal of the American Chemical Society, 146, 34292-34297, 2024.
[36] M. J. Miles, K. D. Jandt, T. J. McMaster, R. L. Williamson, Atomic force microscopy of polymer single crystals and melt-drawn films, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 87, 235-243, 1994.
[37] A. Turner, M. Filella, Polyvinyl chloride in consumer and environmental plastics, with a particular focus on metal-based additives, Environ. Sci.: Processes Impacts, 23, 1376-1384, 2021.
[38] H. Jiang, E. A. Medina, E. E. Stache, Upcycling Poly(vinyl chloride) and Polystyrene Plastics Using Photothermal Conversion, J. Am. Chem. Soc. 147, 2822-2828, 2025.
[39] A. Rahimi, J. M. Garcia, Chemical recycling of waste plastics for new materials production, Nature Reviews Chemistry, 1, 1-11, 2017.
[40] G. A. Mortimer, W. F. Hamner, Density of polyethylene, Journal of Polymer Science Part A: General Papers, 2, 1301-1309, 1964.
[41] C. Unger, H. Schmalz, J. Lipp, W. P. Kretschmer, R. Kempe, A Closed-loop recyclable low-density polyethylene, Advanced Science, 11, 1-5, 2024.
[42] M. Eck, S. T. Schwab, T. F. Nelson, K. Wurst, S. Iberl, D. Schleheck, C. Link, G. Battagliarin, S. Mecking, Biodegradable high-density polyethylene-like material, Angewandte Chemie, 62, 1-4, 2023.
[43] UK Physical Sciences Centre, HEA (National Teaching Fellowship).Available from:
Cite This Article
  • APA Style

    Vishal, N. V. R., Krishnan, S. (2026). Pixel Computer Aided Design (CAD) Method to Understand Mass Measurements, Imaging in Milli, Micro and Nanometer Resolution. International Journal of Materials Science and Applications, 15(1), 15-25. https://doi.org/10.11648/j.ijmsa.20261501.12

    Copy | Download

    ACS Style

    Vishal, N. V. R.; Krishnan, S. Pixel Computer Aided Design (CAD) Method to Understand Mass Measurements, Imaging in Milli, Micro and Nanometer Resolution. Int. J. Mater. Sci. Appl. 2026, 15(1), 15-25. doi: 10.11648/j.ijmsa.20261501.12

    Copy | Download

    AMA Style

    Vishal NVR, Krishnan S. Pixel Computer Aided Design (CAD) Method to Understand Mass Measurements, Imaging in Milli, Micro and Nanometer Resolution. Int J Mater Sci Appl. 2026;15(1):15-25. doi: 10.11648/j.ijmsa.20261501.12

    Copy | Download

  • @article{10.11648/j.ijmsa.20261501.12,
      author = {Nandigana Venkata Raghavendra Vishal and Sivarama Krishnan},
      title = {Pixel Computer Aided Design (CAD) Method to Understand Mass Measurements, Imaging in Milli, Micro and Nanometer Resolution},
      journal = {International Journal of Materials Science and Applications},
      volume = {15},
      number = {1},
      pages = {15-25},
      doi = {10.11648/j.ijmsa.20261501.12},
      url = {https://doi.org/10.11648/j.ijmsa.20261501.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmsa.20261501.12},
      abstract = {In this article we measure the steady mass for our samples polyvinyl chloride and polyethylene. The constant mass is achieved when the acrylic box is used to shield the precision mass balance. The mass of our sample 1 polyvinyl chloride is 160 mg. Our sample 1 polyvinyl chloride is thin film of length 5.5 mm, width 7 mm and thickness 3.2 mm. The density of the polyvinyl chloride is 1300 kg/m3 in agreement with the literature. The stream flow is blocked when the acrylic shield is used. We observe fluctuations in the mass from 320 mg to 560 mg when there is no acrylic shield. The mass of our sample 2 polyethylene is 120 mg and the density is 893 kg/m3 with the acrylic shield. The mass of the polyethylene membrane material fluctuates from 60 mg to 350 mg without the acrylic shield. The geometry of our sample 2 polyethylene is length 14 mm, width 12 mm and thickness 0.8 mm. Further we build pixel computer aided design (CAD) model to correlate with the chemical elements in the periodic table towards exact match with the optical camera image of our two samples that are polyvinyl chloride and polyethylene. Furthermore we build the model to exact match to the scanning electron microscopy (SEM) in micrometer and nanometer resolution to both samples. The chemical periodic table elements are obtained from energy dispersive spectroscopy (EDS). The study of membrane materials can find applications towards energy and thermal management coolants.},
     year = {2026}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Pixel Computer Aided Design (CAD) Method to Understand Mass Measurements, Imaging in Milli, Micro and Nanometer Resolution
    AU  - Nandigana Venkata Raghavendra Vishal
    AU  - Sivarama Krishnan
    Y1  - 2026/01/30
    PY  - 2026
    N1  - https://doi.org/10.11648/j.ijmsa.20261501.12
    DO  - 10.11648/j.ijmsa.20261501.12
    T2  - International Journal of Materials Science and Applications
    JF  - International Journal of Materials Science and Applications
    JO  - International Journal of Materials Science and Applications
    SP  - 15
    EP  - 25
    PB  - Science Publishing Group
    SN  - 2327-2643
    UR  - https://doi.org/10.11648/j.ijmsa.20261501.12
    AB  - In this article we measure the steady mass for our samples polyvinyl chloride and polyethylene. The constant mass is achieved when the acrylic box is used to shield the precision mass balance. The mass of our sample 1 polyvinyl chloride is 160 mg. Our sample 1 polyvinyl chloride is thin film of length 5.5 mm, width 7 mm and thickness 3.2 mm. The density of the polyvinyl chloride is 1300 kg/m3 in agreement with the literature. The stream flow is blocked when the acrylic shield is used. We observe fluctuations in the mass from 320 mg to 560 mg when there is no acrylic shield. The mass of our sample 2 polyethylene is 120 mg and the density is 893 kg/m3 with the acrylic shield. The mass of the polyethylene membrane material fluctuates from 60 mg to 350 mg without the acrylic shield. The geometry of our sample 2 polyethylene is length 14 mm, width 12 mm and thickness 0.8 mm. Further we build pixel computer aided design (CAD) model to correlate with the chemical elements in the periodic table towards exact match with the optical camera image of our two samples that are polyvinyl chloride and polyethylene. Furthermore we build the model to exact match to the scanning electron microscopy (SEM) in micrometer and nanometer resolution to both samples. The chemical periodic table elements are obtained from energy dispersive spectroscopy (EDS). The study of membrane materials can find applications towards energy and thermal management coolants.
    VL  - 15
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Sections