Archive




Volume 1, Issue 1, December 2012, Page: 14-22
Iron-doped BaTiO3: Influence of iron on physical properties
Ashutosh Mishra, School of Physics, Devi Ahilya University, Khandwa Road, Indore, India
Niyati Mishra, School of Physics, Devi Ahilya University, Khandwa Road, Indore, India
Received: Dec. 31, 2012;       Published: Dec. 30, 2012
DOI: 10.11648/j.ijmsa.20120101.13      View  4453      Downloads  412
Abstract
Barium Titanate BaTiO3 is known for both its electric and magnetic properties. The synthesis and characterization of iron doped barium titanate; BaTi1-xFexO3 (x= 0.005, 0.01, 0.015) was investigated with a view to understand its structural, magnetic and electrical properties. A finest possible sample of Iron doped micro particles of BaTiO3 (BTO) with possible tetragonal structure via a solid-state route was prepared. Prepared samples of BaTi1-xFexO3 (Fe-BTO) were structural characterized by X-ray diffraction (XRD) then XRD data fitted by Rietveld refinement. Fourier Transform Infrared Spectroscopy were use to determine the Ti-O bond length position according to increment in Iron on Titanium site. The dielectric constant measurements of the samples were carried out at 1 MHz. Vibrating Sample Magnetometer (VSM) measurements revealed the magnetic nature of Iron doped BaTiO3. Magnetic Moment verses Temperature plot took at 1Tesla and Magnetic Moment verses Magnetic field plot took at low temperature (10K). Ferroelectric hysteresis loop traced at the electric field in-between -8 to +8 (KV/cm). Details of the preparation technique, experimental results, data analysis, and the interpretation will be presented.
Keywords
Iron Doped Barium Titanate, X-Ray Diffraction, Fourier Transform Infrared Spectroscopy, Dielectric Measurement, Magnetic Properties And Electrical Properties
To cite this article
Ashutosh Mishra, Niyati Mishra, Iron-doped BaTiO3: Influence of iron on physical properties, International Journal of Materials Science and Applications. Vol. 1, No. 1, 2012, pp. 14-22. doi: 10.11648/j.ijmsa.20120101.13
Reference
[1]
D. Makovec, Z. Samadmija and M. Drofenik, J. Am. Ceram. Soc. 87, 1324 (2004).
[2]
D. Maga, P. Igor and M. Sergei, J. Mater. Chem. 10, 941 (2000).
[3]
A. Jana, T. K. Kundu, S. K. pradhan and D. Chakravorty, J. Appl. Phys. 97 (4), 44311 (2005).
[4]
Z. Jin, C. Ang and Z. Yu, J. Am. Ceram. Soc. 82(5) 1345 (1999).
[5]
P. Yongping, Y. Wenhu and C. Shoutian, J. Rare Earths. 25, 154 (2005).
[6]
P. Gunter and J.P. Huignard, (ed) Photorefactive Materials and their Application I and II (Berlin: Springer), (1998).
[7]
R. Waser, T. Bieger and J. Maier, Solid State Commun.76, 1077, (1990).
[8]
W.T. Wang, G. Yang, P. Duan, Y. L. Zhou and Z. H. Chen, Chin. Phys. Lett. 19 1122, (2002).
[9]
C. Ang, Z. Yu, Z. Jing, P. Lunkenheimer and A. Loidl, Phys. Rev. B 61 3922 (2000).
[10]
T. Higuchi, T. Tsukamoto, K. Kobayashi, I. Ishiwata, M. Fujisawa, T. Yokoya, S. Yamaguchi and S. Shin, Phys. Rev. B 61 12860 (2000).
[11]
Q. B. Liu, R. Q.Li, Y. Z.Zeng and Z.Z. Zhu, Acta Phys. Sin. 55 0873 (in Chinese) (2006).
[12]
M. Z. Yao, M. Gu and F. S. Liu, Chin. Phys. 12 0084 (2003).
[13]
F. S. Liu, M. Gu and R. Zhang, Chin. Phys. 13 1931 (2004).
[14]
M. O. Selme, P. Pecheur and G. Toussaint, J. Phys. C 17 5185 (1984).
[15]
F. M. Michel-Calendini and K. A. Muller, Solid StateCommun. 40 255 (1981).
[16]
R. A. Evarestov, S. Piskunov, E. A. Kotomin and G. Borstel,Phys. Rev. B 67 064101 (2003).
[17]
R. Astala and P. D. Bristowe, Modelling Simul. Mater.Sci. Eng. 9 415 (2001).
[18]
W. S. Shi, Z. H. Chen, N. N. Liu, H. B. Liu, Y. L. Zhou, D.F. Cui and Z. H. Chen, Appl. Phys. Lett., 75, 1547, (1999).
[19]
G. Yang, H. H. Wang, G. T. Tan, A. Q. Jiang, Y. L. Zhou, G. Z. Yang and Z. H. Chen, Chin. Phys. Lett., 18, 1598, (2001).
[20]
W. F. Zhang, Y. B. Huang, M. S. Zhang and Z. G. Liu, Appl. Phys. Lett. 76, 1003, (2000).
[21]
B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Nature 401, 682C684 (1999).
[22]
L.E. Cross, Ferroelectrics 151,305 (1994).
[23]
N. Setter, L.E. Cross, J. Appl. Phys. 51, 4356 (1980).
[24]
H. Ardnt, F. Sauerbier, G. Schmidt, A. Shebanov, Ferroelectrics 79, 145 (1988).
[25]
G.A. Smolenski, V.A. Isupov, Dokl. Akad. Nauk. SSSR 9, 653 (1954).
[26]
G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, S.N. Popov, Sov. Phys. Solid State 2, 2584 (1961).
[27]
R.M. Glaister, J. Am. Ceram. Soc. 43, 348 (1960).
[28]
P. Gallagher, J. Am. Ceram. Soc. 46, 359 (1963).
[29]
A.I. Kashilinski, V.I. Chechernikov, Yu.N. Venevtsev, Sov. Phys. Solid State 8, 2074 (1967).
[30]
I.H. Ismailzade, R.M. Ismailov, Phys. Stat. Sol. (a) 59, K191 (1980).
[31]
M. Mahesh Kumar, M.B. Suresh, S.V. Suryanarayana, G.S. Kumar, J. Appl. Phys. 6811, 84, (1998).
[32]
M. Mahesh Kumar, M.B. Suresh, S.V. Suryanarayana, J. Appl. Phys. 86, 1634 (1999).
[33]
Chen Ang, Zhi Yu, Zhi Jing, Phys. Rev. B 61, 957 (2000).
[34]
J. M. Herbert, Ferroelectric Transducer and Sensors, Gordon and Breach, New York (1980).
[35]
M. S. Mohammed, G. W. Auner, R. Naik, J. V. Mantese, N. W. Schubring, and A. L. Micheli, J. Appl. Phys. 84, 3322 (1998).
[36]
D. A. Scribner, M. K. Kruer, and J. M. Killiany, Proc. IEEE 79, 66 (1991).
[37]
E. L. Dereniak and D. G. Crowe, Optical Radiation Detectors, Wiley, New York, (1984).
[38]
R. Vivekanandan, S. Philip and T. N. Kutty, Mater.Res.Bull., 22, 99 (1986).
[39]
D. Hennings and S. Schreinemacher, J.Eur.Ceram.Soc., 9, 41 (1992).
[40]
J. C. Slater, Phys.Rev., 78, 448 (1950).
[41]
W. G. Spitzer, R. C. Miller, D. A. Kleiman and L. E. Howarth, Phys.Rev., 126, 1710 (1962).
[42]
K. S. Mazdiyasni, R. T. Dolloff, and J. S. Smith, J. Am. Ceram. Soc., 52, 523 (1969).
[43]
M. P. Pechini, US Patent no. 3, 330, 697 (11 July 1967).
[44]
M. Kakihana, M. Arima, M. Yashima, M. Yoshimura, Y. Nakamura, H. Mazaki, and H. Yasuoka, Sol-Gel Science and Technology (The American Ceramic Society, Columbus, OH,), p. 65, (1994).
[45]
R. Vivekanandan and T. R. N. Kutty, Ceram. Int. 14, 207 (1988).
[46]
K. Fukai, K. Hidaka, M. Aoki, and K. Abe, Ceram. Int. 16, 285 (1990).
[47]
M. Leoni, M. Viviani, P. Nanni, and V. Buscaglia, J. Mater. Sci. Lett. 15, 1302 (1996).
[48]
J. W. Liou and B. S. Chiou, J. Am. Ceram. Soc. 80, 3093 (1997).
[49]
J. T. Last, Phys. Rev. 105, 1740 (1957).
[50]
G. Arlt, D. Henningsand, and G. deWith J. Appl. Phys. 58, 1619 (1985).
[51]
C. Ederer and N. A. Spaldin, Nat. Mater., 3, 849, (2004).
[52]
J. J. Li, J. Yu, J. Li, M. Wang, Y. B. Li, Y. Y. Wu, J. X. Gao and Y. B. Wang, Acta Phys. Sin., 59, 1302, (2010).
[53]
D. Y.Guo, C. Li, C. B. Wang, Q. Shen, L. M. Zhang, R. Tu and T. Goto, Acta Phys. Sin., 59, 5772, (2010).
[54]
Q. X. Zhao, J. K. Ma, B. Geng, D. Y. Wei, L. Guan and B. T.Liu, Acta Phys. Sin. ,59, 8042, (2010).
[55]
A. F. Devonshire, Phil. Mag., 40, 1040 (1949)
Browse journals by subject