Archive




Volume 3, Issue 5, September 2014, Page: 200-204
Transient Response in Aqueous Solution of an Anions Porous Silicon Based Sensor
Arturo Ramirez-Porras, CICIMA and Escuela de Fisica, Universidad de Costa Rica, San Pedro 11501, Costa Rica
Natalia Murillo-Quiros, Escuela de Fisica, Instituto Tecnologico de Costa Rica, Cartago, Costa Rica
Received: Aug. 22, 2014;       Accepted: Sep. 12, 2014;       Published: Sep. 30, 2014
DOI: 10.11648/j.ijmsa.20140305.20      View  2953      Downloads  154
Abstract
A porous silicon based sensor has been developed to detect anions in a salt solution by the application of DC pulses on a Semiconductor/Electrolyte system. The sensor performance can be explained invoking a model where charge accumulation in the semiconductor surface states directly affects their geometric capacitances. By varying anions concentrations in salt solution, the results show a fairly constant value of substrate resistance, whereas variations in those geometric capacitances depend on the anion concentration. The constancy of substrate resistance and variability of geometric capacitance constitute key points for the development of an anion solution sensor.
Keywords
Porous Silicon, Chemical Sensors, Surface States
To cite this article
Arturo Ramirez-Porras, Natalia Murillo-Quiros, Transient Response in Aqueous Solution of an Anions Porous Silicon Based Sensor, International Journal of Materials Science and Applications. Vol. 3, No. 5, 2014, pp. 200-204. doi: 10.11648/j.ijmsa.20140305.20
Reference
[1]
"O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep., vol. 38, no. 1–3, pp. 1–126 ( 2000).
[2]
G. Korotcenkov, Handbook of Gas Sensor Materials. Springer New York, 2013.
[3]
N. Murillo, E. Rucavado, and A. Ramírez-Porras, “Effect of ethanol in an inorganic salt detector based on porous silicon,” Phys. Status Solidi C, vol. 6, no. 7, pp. 1709–1712 ( 2009).
[4]
T. R. Dargaville, B. L. Farrugia, J. A. Broadbent, S. Pace, Z. Upton, and N. H. Voelcker, “Sensors and imaging for wound healing: A review,” Biosens. Bioelectron., vol. 41, pp. 30–42 (2013).
[5]
S. Dhanekar and S. Jain, “Porous silicon biosensor: Current status,” Biosens. Bioelectron., vol. 41, pp. 54–64, (2013).
[6]
A. Many, N. B. Grover, and Goldstein, Semiconductor Surfaces, By A. Many, Y. Goldstein, and N.B. Grover. Amsterdam, North-Holland Pub. Co., 1965.
[7]
S. Z. Weisz, A. R. Porras, M. Gomez, A. Many, Y. Goldstein, and E. Savir, “Relation between luminescence and electronic surface characteristics in p-type porous silicon,” J. Lumin., vol. 72–74, pp. 729–730 (1997).
[8]
M. Wolovelsky, J. Levy, A. Many, S. Z. Weisz, and O. Resto, “Space charge and surface state characteristics of the silicon/electrolyte interface,” Surf. Sci., vol. 171, pp. 442–464 (1986).
[9]
A. Ramirez Porras, O. Resto, S. Z. Weisz, Y. Goldstein, A. Many, and E. Savir, “Luminescence and Surface-State Characteristics in P-Type Porous Silicon,” MRS Online Proc. Libr., vol. 452 (1996). "
Browse journals by subject