Volume 4, Issue 2, March 2015, Page: 69-76
Carbon-Ionomer Nanocomposite Wetting Properties: The Role of Ionomer Composition and Surface Roughness
Sonal Mazumder, Department of Macromolecular Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
Yanfang Fan, Department of Chemical Engineering, Georgia Tech, Atlanta, USA
Chris J. Cornelius, Department of Chemical & Bimolecular Engineering, University of Nebraska, Lincoln, USA
Received: Jan. 10, 2015;       Accepted: Feb. 8, 2015;       Published: Feb. 16, 2015
DOI: 10.11648/j.ijmsa.20150402.11      View  4050      Downloads  235
Abstract
Surface hydrophobicity changes of a series of nanocomposite films were evaluated as a function of roughness and ionomer concentration. Nanocomposite surfaces were created by coating a smooth silicon wafer and micro textured surfaces based on two types of 3M micro-replicated Brightness Enhancement Films (BEF). Multiple nanocomposite surfaces were evaluated as a function of Pt/C catalyst, a single walled carbon nanotube (SWCNT), and ionomer concentration varying between 7.5 to 27.3 wt% Nafion. An increase in hydrophobicity was observed for all nanocomposite surfaces as compared to bare substrates coated with ionomer. Bare substrates had observed water contact angles of 32.5o on silicon, 50.8o on BEF type Y, and 91.2o on BEF type P. Nanocomposites coated on BEF type P surfaces had the greatest increase in apparent contact angle starting from 101.5o on a surface coated with ionomer to 140.6o for an ionomer composite containing 100 wt% Pt/C followed by BEF type Y (78.4o - 135.4o) and Si (76.9o - 135.8o). Nanocomposite roughness increased with increasing ionomer concentration and was inversely related to the apparent contact angle of water. Nanocomposite wetting properties were strongly dependent upon ionomer concentration and micro scale roughness contributed to wetting behavior transitioning between Wenzel and Cassie modes.
Keywords
Hydrophobicity, Contact Angle, Wetting, Wenzel and Cassie Model, Nanocomposite, Ionomer, Carbon Nanotube
To cite this article
Sonal Mazumder, Yanfang Fan, Chris J. Cornelius, Carbon-Ionomer Nanocomposite Wetting Properties: The Role of Ionomer Composition and Surface Roughness, International Journal of Materials Science and Applications. Vol. 4, No. 2, 2015, pp. 69-76. doi: 10.11648/j.ijmsa.20150402.11
Reference
[1]
D.Y. Ryu, K. Shin, E. Drockenmuller, C.J. Hawker, T.P. Russell, Science 308 (2005) 236.
[2]
X Zhang, F. Shi, X. Yu, H. Liu, Y. Fu, Z. Wang, L. Jiang, X. Li, Journal of the American Chemical Society 126 (2004). 3064.
[3]
C. Zhang, H. Cai, B. Chen, W. Dong, Z. Mu, X. Zhang Chinese, Journal of Catalysis 29(1) (2008) 1.
[4]
A. Marmur, Soft Matter 2 (2006) 12.
[5]
J. I. Rosales-Leal, M. A. Rodríguez-Valverde, G. Mazzaglia, P.J. Ramón-Torregrosa, L. Díaz-Rodríguez, O. García-Martínez, M. Vallecillo-Capilla, C. Ruiz, and M. A. Cabrerizo-Vílchez, Colloids and Surfaces A: Physicochemical and Engineering aspects 365 (2010) 222.
[6]
A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley and R. H. Cohen, Science 318 (2007) 1618.
[7]
L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D. Zhu Advanced Materials 14 (2002) 1857.
[8]
A. R. Thiam, R. V. Farese, T. C. Walther, Nature Reviews Molecular Cell Biology, 14, (2013), 775.
[9]
K. Grundke, K. Pöschel, A. Synytska, R. Frenzel, A. Drechsler, M. Nitschke, A.L. Cordeiro, P. Uhlmann, P.B. Welzel, Adv Colloid Interface Sci. (2014), doi:10.1016/j.cis.2014.10.012
[10]
R. Menini,M. Farzaneh, Polymer International 57(1) (2008) 77.
[11]
N. Zhao, Q. Xie, X. Kuang, S. Wang, Y. Li, X. Lu, S. Tan, J. Shen, X. Zhang, Y. Zhang, J. Xu, C.C. Han, Advanced Functional Materials 17(15) (2007) 2739.
[12]
S. Naha, S. Sen, I.K. Puri, Carbon 45(8) (2007) 1702.
[13]
J.D. Miller, S. Veeramasuneni, J. Drelich, M.R. Yalamanchili, G. Yamauchi, Polymer Engineering & Science 36(14) (1996) 1849.
[14]
L. Zhang, Z. Zhou, B. Cheng, J.M. DeSimone, E.T. Samulski, Langmuir 22(20) (2006) 8576.
[15]
L. Feng, Z. Yang, J. Zhai, Y. Song, B. Liu, Y. Ma, Z. Yang, L. Jiang, D. Zhu, Angewandte Chemie 115(35) (2003) 4349.
[16]
C. Journet, S. Moulinet, C. Ybert, S.T. Purcell, L. Bocquet, Europhysics Letters 71(1) (2005) 104.
[17]
S. Yang, Microfluidics and Nanofluidics 2(6) (2006) 501.
[18]
V.M. Linkov, L.P. Bobrova, S.V. Timofeev, and R. D. Sanderson, Materials Letters 24(1-3) (1995) 147.
[19]
C.D. Papaspyrides, J. Poulakis, Polymer International 27(2) (1992) 139.
[20]
I.A. Levitsky, P.T. Kanelos, W.B. Euler, Materials Research Society Proceedings 785 (2004) D9.1.1.
[21]
M.A. Scibioha, I.-H. Oha, T.H. Lima, S.A. Honga, H. Yong, Applied Catalysis B: Environmental 77(3-4) (2008) 373.
[22]
Y.T. Cheng, D.E. Rodak, Applied Physical Letters 86 (2005) 144101.
[23]
R.N. Wenzel, Industrial & Engineering Chemistry 28(8) (1936) 988.
[24]
A.B.D Cassie, S. Baxter, Transactions of the Faraday Society 40 (1944) 546.
[25]
A. Lafuma, D. Quere, Nature Materials 2(7) (2003) 457.
[26]
G. Zhang, S. Sun, M.I. Ionescu, H. Liu, Y. Zhong, R. Li, X. Sun, Langmuir 26(6) (2010) 4346.
[27]
L.M. Nikolic, L. Radonjic, V.V. Srdic, Ceramics International 31(2) (2005) 261.
[28]
M. Nosonovsky, B. Bhushan, Microsystems Technology 11(7) (2005) 535.
[29]
O. Tasuku, B. Ding, Y. Sone, S. Shiratori, Nanotechnology 18 (2007) 165607.
[30]
Q.Y. Tong, T.H. Lee, U. Gosele, M. Reiche, J. Ramm, E. Beck, Journal of The Electrochemical Society 144(1) (1997) 384.
[31]
P. van der Wal, U. Steiner, Soft Matter 3 (2007) 426.
[32]
J.T. Han, Y. Zheng, J.H. Cho, X. Xu, K. Cho The Journal of Physical Chemistry B 109(44) (2005) 20773.
[33]
Y. Zhou, B. Wang, X. Song, E. Li, G. Li, S. Zhao, H. Yan, Applied Surface Science 253(5) (2006) 2690.
[34]
Kah-Young Song, Han-Kyu Lee and Hee-Tak Kim Electrochemica Acta 53(2) (2007) 637.
Browse journals by subject