Archive




Volume 5, Issue 4, July 2016, Page: 178-182
Improvement of Quantum Efficiency in Transmission-Type Spin-Polarized Photocathode
Xiuguang Jin, Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
Fumiaki Ichihashi, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
Atsushi Mano, Synchrotron Radiation Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
Masahiko Suzuki, Fundamental Electronics Research Institute, Osaka Electro-Communication University, Neyagawa, Osaka, Japan
Tsuneo Yasue, Fundamental Electronics Research Institute, Osaka Electro-Communication University, Neyagawa, Osaka, Japan
Takanori Koshikawa, Fundamental Electronics Research Institute, Osaka Electro-Communication University, Neyagawa, Osaka, Japan
Yoshikazu Takeda, Aichi Synchrotron Radiation Center, Seto, Japan
Received: Aug. 5, 2016;       Published: Aug. 8, 2016
DOI: 10.11648/j.ijmsa.20160504.11      View  3588      Downloads  117
Abstract
We successfully developed a new transmission-type GaAs/GaAsP strained superlattice photocathode with an AlGaAs transparent inter-layer and Si3N4 anti-reflection coating. The electrons emitted from this photocathode showed a high spin polarization of 90% with a quantum efficiency as high as 0.4%. In the application for spin-polarized low energy electron microscope, a high emission current of over 1 µA was observed at 3.6 mW pump laser power. Transmission electron microscopy observation revealed that there were a small disorder and some dislocations in the GaAs/GaAsP superlattice layers. The disordered superlattice layers result in a fluctuation of the superlattice band structure and the dislocations trap the photo-electrons during the diffusion to the surface. Both of the defects influenced the performance of spin-polarized photocathode.
Keywords
Spin Polarization, Photocathode, Superlattice, Microscopy
To cite this article
Xiuguang Jin, Fumiaki Ichihashi, Atsushi Mano, Masahiko Suzuki, Tsuneo Yasue, Takanori Koshikawa, Yoshikazu Takeda, Improvement of Quantum Efficiency in Transmission-Type Spin-Polarized Photocathode, International Journal of Materials Science and Applications. Vol. 5, No. 4, 2016, pp. 178-182. doi: 10.11648/j.ijmsa.20160504.11
Reference
[1]
F. Lin, A. Bogacz, P. Brindza, Proceeding of IPAC2015 (2015) 1302.
[2]
Y. Jing, V. N. Litvinenko, D. Trbojevic, Proceeding of IPAC2015 (2015) 757.
[3]
S. Komamiya, Proceeding of IPAC2016 (2016) 1.
[4]
B. List, L. Hagge, N. J. Walker, Proceeding of IPAC2016 (2016) 51.
[5]
M. Kuwahara, S. Kusunoki, Y. Nambo, K. Saitoh, X. G. Jin, T. Ujihara, H. Asano, Y. Takeda, N. Tanaka, Appl. Phys. Lett., 105 (2014) 193101.
[6]
K. Yoshida, K. Murakami, J. Fujita, J. Vac. Sci. Technol. B32 (2014) 06FC02.
[7]
O. Romanyuk, S. F. Garrido, P. Jiricek, I. Bartos, L. Geelhaar, O. Brandt, T. Taskova, Appl. Phys. Lett. 106 (2015) 021602.
[8]
D. Yu, C. Math, M. Neier, M. Escher, G. Rangelov, M. Donath, Surf. Sci. 601 (2007) 5803.
[9]
T. Omori, Y. Kurihara, Y. Takeuchi, M. Yoshioka, T. Nakanishi, S. Okumi, M. Tsubata, M. Tawada, K. Togawa, Y. Tanimoto, C. Takahashi, T. Baba, M. Mizuta, Jpn. J. Appl. PHys. 33 (1994) 5676.
[10]
K. Togawa, T. Nakanishi, T. Baba, F. Furuta, H. Horinaka, Y. Kurihara, H. Matsumoto, T. Matsuyama, T. Nishitani, S. Okumi, T. Omori, C. Suzuki, Y. Takeuchi, K. Wada, M. Yamamoto, M. Yoshioka, Nucl. Instrum. Methods Phys. Res. A 455 (2000) 118.
[11]
T. Nishitani, T. Nakanishi, M. Yamamoto, S. Okumi, F. Furuta, M. Miyamoto, M. Kuwahara, N. Yamamoto, and K. Naniwa, H. Horinaka. T. Matsuyama, K. Togawa, T. Saka, M. Tawada, T. Omori, Y. Kurihara, M. Yoshioka, K. Kato, and T. Baba, J. Appl. Phys. 97 (2005) 094907.
[12]
Yu. A. Mamaev, L. G. Gerchikov, Yu. P. Yashin, D. A. Vasiliev, V. V. Kuzmichev, V. M. Ustinov, A. E. Zhukov, V. S. Mikhrin, A. P. Vasiliev, Appl. Phys. Lett. 93 (2008) 81114.
[13]
N. Yamamoto, T. Nakanishi, A. Mano, Y. Nakagawa, S. Okumi, M. Yamamoto, T. Konomi, X. G. Jin, T. Ujihara, Y. Takeda, T. Ohshima, T. Saka, T. Kato, H. Horinaka, T. Yasue, T. Koshikawa, M. Kuwahara, J. Appl. Phys. 103 (2008) 064905.
[14]
X. G. Jin, N. Yamamoto, Y. Nakagawa, A. Mano, T. Kato, M. Tanioku, T. Ujihara, Y. Takeda, S. Okumi, M. Yamamoto, T. Nakanishi, T. Saka, H. Horinaka, T. Kato, T. Yasue, T. Koshikawa, Appl. Phys. Express 1 (2008) 045002.
[15]
X. G. Jin, Y. Maeda, T. Saka, M. Tanioku, S. Fuchi, T. Ujihara, Y. Takeda, N. Yamamoto, Y. Nakagawa, A. Mano, S. Okumi, M. Yamamoto, T. Nakanishi, H. Horinaka, T. Kato, T. Yasue, and T. Koshikawa, J. Cryst. Growth 310 (2008) 5039.
[16]
T. Saka, Y. Ishida, M. Kanda, X. G. Jin, Y. Maeda, S. Fuchi, Y. Takeda, T. Matsuyama, H. Horinaka, T. Kato, N. Yamamoto, A. Mano, Y. Nakagawa, M. Kuwahara, S. Okumi, T. Nakanishi, M. Yamamoto, T. Ohshima, T. Kohashi, M. Suzuki, M. Hashimoto, T. Yasue, T. Koshikawa, e-J. Surf. Sci. Nanotech. 8 (2010) 125.
[17]
Chris G. Van de Walle, Phys. Rev. B39 (1989) 1871.
[18]
S. Gasiorowicz, in Quantum Physics, Chapter 5, Ed. C. Mills, (John Wiley & Sons, Inc., New York, 1996).
[19]
X. G. Jin, H. Nakahara, K. Saitoh, T. Saka, T. Ujihara, N. Tanaka, Y. Takeda, J. Cryst. Growth 353 (2012) 84.
[20]
H. M. Cox, D. E. Aspnes, S. J. Allen, P. Bastos, D. M. Hwang, S. Mahajan, M. A. Shahid, P. C. Morais, Appl. Phys. Lett. 57 (1990) 611.
[21]
M. Suzuki, M. Hashimoto, T. Yasue, T. Koshikawa, Y. Nakagawa, T. Konomi, A. Mano, N. Yamamoto, M. Kuwahara, M. Yamamoto, S. Okumi, T. Nakanishi, X. G. Jin, T. Ujihara, Y. Takeda, T. Kohashi, T. Oshima, T. Saka, T. Kato, H. Horinaka, Appl. Phys. Express 3 (2010) 026601.
Browse journals by subject