Volume 6, Issue 2, March 2017, Page: 108-111
A First-Principles Study of a New Heusler Alloy
Chen Chen, North China University of Science and Technology Qian'an College, Tangshan, China
Jingbo Ren, North China University of Science and Technology Qian'an College, Tangshan, China
Zhenguo Wang, North China University of Science and Technology Qian'an College, Tangshan, China
Lei Feng, North China University of Science and Technology Qian'an College, Tangshan, China; North China University of Science and Technology Metallurgy and Energy College, Tangshan, China
Wufeng Jiang, North China University of Science and Technology Metallurgy and Energy College, Tangshan, China
Suju Hao, North China University of Science and Technology Metallurgy and Energy College, Tangshan, China
Received: Jan. 20, 2017;       Accepted: Feb. 22, 2017;       Published: Mar. 9, 2017
DOI: 10.11648/j.ijmsa.20170602.17      View  1830      Downloads  79
Abstract
A full-Heusler alloy Ti2NiGa have been investigated by first-principles calculations. The electronic structures and magnetic properties have been obtained. The compound is predicted to be a new half-metal ferrimagnet. The calculations show that there is an energy gap in the minority spin of the band structures, whereas the other spin is strongly metallic, which results in a complete spin polarization of the conduction electrons at the Fermi level. This is the obvious feature of a half-metal. The compound has a total magnetic moment of 3.0 µB per unit cell on first-principles calculations which is in excellent agreement with the Slater–Pauling (SP) rule. The magnetic moments of Ti (A) atom and Ti (B) atoms are different. This difference comes from different atom coordination surroundings of Ti (A) and Ti (B) atoms in crystal structure.
Keywords
Heusler Alloy, Half-Metal Ferromagnet, First-Principles, Band Structure
To cite this article
Chen Chen, Jingbo Ren, Zhenguo Wang, Lei Feng, Wufeng Jiang, Suju Hao, A First-Principles Study of a New Heusler Alloy, International Journal of Materials Science and Applications. Vol. 6, No. 2, 2017, pp. 108-111. doi: 10.11648/j.ijmsa.20170602.17
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
F. Heusler, Verh. Dtscht. Phys. Ges. 5, 219 (1903).
[2]
J. Pierre, R. V. Skolozdra, Yu. K. Gorelenko and M. Konacou, J. Magn. Magn. Mater. 134, 95 (1994).
[3]
R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).
[4]
Lewis S. P, Allen P. B, and Sasaki T, Phys. Rev. B. 55, 10253 (1997).
[5]
S. Ishida, T. Masaki, S. Fujii and S. Asano, Physica B. 245, 1 (1998).
[6]
R. Weht and W. E. Pickett, Phys. Rev. B. 60, 13006 (1999).
[7]
A. Kellow, N. E. Fenineche, T. Grosdidier, H. Aourag and C. Coddet, J. Appl. Phys. 94, 3292 (2003).
[8]
S. Ishida, S. Kawakami and S. Asano, Mater. Trans. JIM. 45, 1065 (2004).
[9]
Y. Miura, K. Nagano and M. Shirai, Phys. Rev. B. 69, 144413 (2004).
[10]
S. Ishida, S. Sugimura, S. Fujii and S. Asano: J. Phys.: Condens. Matter Vol. 3, (1991), p. 5793.
[11]
R. Y. Umetsu, K. Kobayashi, R. Kainuma, A. Fujita, K. Fukamichi, K. Ishida and A. Sakuma, Appl. Phys. Lett. 85, 2011 (2004).
[12]
S. Wurmehl, G. H. Fecher, H. C. Kandpal, V. Ksenofontov and C. Felser, Appl. Phys. Lett. 88, 032503 (2006).
[13]
J. Li, Y. Li, G. Zhou, Y. Sun and C. Q. Sun, Appl. Phys. Lett. 94, 242502 (2009).
[14]
J. Li, G. F. Chen, J. F. Li, Y. X. Li and C. Q. Sun, Scripta Materialia. 59, 1107 (2008).
[15]
J. Li, G. F. Chen, H. Y. Liu, Y. X. Li, J. F. Li and X. W. Xu, J. Magn. Magn. Mater. 322, 1 (2010).
[16]
Lei Feng, Chengchun Tang, Shuangjin Wang, Wenchen He, J. alloys and compounds. 509, 5187 (2011).
[17]
F. Ahmadian, J. Supercond Nov Magn. 26, Issue 2, 381 (2013).
[18]
H. C. Kandpal, G. H. Fecher and C. Felser, J. Phys. D. 40, 1507 (2007).
[19]
S. Sanvito and N. A. Hill, Phys. Rev. B. 62, 15553 (2000).
[20]
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[21]
E. Wimmer, H. Krakauer, M. Weinert and A. J. Freeman, Phys. Rev. B. 24, 864 (1981).
[22]
M. Weinert, E. Wimmer and A. J. Freeman, Phys. Rev. B. 26, 4571 (1982).
[23]
J. P. Perdew, J. A. Chevary, S. H. Vosko, A. Jackson, M. R. Pederson and C. Fiolhais, Phys. Rev. B. 46, 6671 (1992).
[24]
I. Galanakis, P. H. Dederichs and N. Papamkolaou, Phys. Rev. B. 66, 174429 (2002).
[25]
Kübler J, Physica B. 127, 257 (1984).
[26]
Jung D, Koo HJ, Whangbo MH, J Mol Struct (Theochem). 527, 113 (2000).
[27]
J. Li, Y. Li, X. Dai and X. Xu, J. Magn. Magn. Mater. 321, 365 (2009).
[28]
K. Capelle and G. Vignale, Phys. Rev. Lett. 86, 5546 (2001).
Browse journals by subject